
Software Security Maturity
in Public Organisations

Martin Gilje Jaatun1, Daniela S. Cruzes1, Karin Bernsmed1, Inger Anne
Tøndel1, and Lillian Røstad2

1 Department of Software Engineering, Safety and Security
SINTEF ICT

NO-7465 Trondheim, Norway
{martin.g.jaatun,danielac,karin.bernsmed,inger.a.tondel}@sintef.no

http://infosec.sintef.no
2 Norwegian Agency for Public Management and eGovernment (Difi)

Oslo, Norway
lillian.rostad@difi.no

http://www.difi.no/

Abstract. Software security is about building software that will be se-
cure even when it is attacked. This paper presents results from a survey
evaluating software security practices in software development lifecycles
in 20 public organisations in Norway using the practices and activities
of the Building Security In Maturity Model (BSIMM). The findings sug-
gest that public organisations in Norway excel at Compliance and Policy
activities when developing their own code, but that there is a large po-
tential for improvement with respect to Metrics, Penetration testing, and
Training of developers in secure software development.

Keywords: Software Security, Secure Software Engineering, Maturity,
BSIMM

1 Introduction

Society is increasingly dependent on information and communication technology
(ICT). Traditionally, ICT security has primarily been about implementing secu-
rity mechanisms on the system or network level. In recent times, it has become
clear that it is equally important to ensure that all mechanisms of the software
is secure including the code itself, i.e., develop software from scratch so that it
is secure against attack [4]. This is what we call software security.

Numerous guidelines and best-practices exist, which outline processes and
methodologies that can be adopted to achieve better software security. However,
in practice these are only used to a limited extent and the problem of insecure
software is bigger than ever [1]. We argue that organisations learn best by com-
paring themselves to other organisations that tackle similar challenges, rather
than comparing themselves to abstract theoretical models of ideal practices for
software security.

Published in "Information Security", Volume 9290 of the series Lecture
Notes in Computer Science, pp 120-138, 27 August 2015
http://link.springer.com/chapter/10.1007%2F978-3-319-23318-5_7



2 M. G. Jaatun et al.

The Building Security In Maturity Model (BSIMM) [5] is a study of real-
world software security initiatives that is organised so that an organisation can
use it to determine where they stand with their software security initiative.
BSIMM provides an overview over the security of software by mapping how it
was built, what kind of activities that were carried out while it was built and
by measuring a number of artefacts that were created when it was developed.
BSIMM can also be used to measure how an organisation’s software security
efforts evolve over time.

The BSIMM study is dominated by large American companies, and the av-
erage number of developers in the studied organisations exceeds 4000. We were
therefore curious to see how applicable the BSIMM activities were to smaller,
non-commercial organisations in Europe, and if we could identify any discrep-
ancies and obvious areas for improvement of the current practices in these or-
ganisations.

This paper reports on a software security maturity study in 20 Norwegian
public organisations, based on the BSIMM framework. The organisations that
we have studied are all part of or owned by the government or municipalities in
Norway.

Both on a European and a national level there is a push towards a more effi-
cient public sector through use of eGovernment services. eGovernment consists
mainly of the digital interactions between a citizen and their government (C2G),
between governments and government agencies (G2G) and between government
and citizens (G2C) and between government and businesses/commerce (G2B).
The move towards eGovernment, also means a move towards a more digitalized
society; a society relying heavily on ICT and software-based services to function.
Thus, security becomes a major concern.

The Cyber Security Strategy for Norway [6] describes current and future
security challenges and points to where efforts should be focused in order to meet
those challenges. The strategy, and it’s accompanying action plan, suggests that a
center of competence for information security in the public sector is needed. This
study is part of the work done to collect information and knowledge, needed to
be able to focus the work of this competence center. The study provides valuable
insight, and acts as a benchmark study. The intention is to repeat the study, at
intervals yet to be determined, to assess the effect of efforts to improve software
security in the public sector.

The remainder of this paper is organised as follows: In Section 2 we present
the theoretical background for the study, and in Section 3 we elaborate on the
method employed. The results are described in Section 4, and discussed in Sec-
tion 5. Section 6 concludes the paper and outlines further work. The question-
naire that was used in the study is presented in Appendix A.

2 Background

There are two well-known maturity models for software security; BSIMM [5] and
OpenSAMM [7]. Both have a common origin, and have many similarities.



Software Security Maturity in Public Organisations 3

BSIMM and OpenSAMM are organised in a similar fashion, and contain
many similar topics and activities. Both divide the software security practices
into three main areas with twelve practices in total, and place the practices
into three maturity levels. However, their content and fundamental idea differ.
BSIMM is based on real-world data and only includes activities that are done
by real companies. As such it does not aim to tell what activities should be
performed, but rather what activities are actually performed by companies today.
OpenSAMM is not based on real-world data directly, but rather on experience on
what activities will improve software security, and that thus should be performed.
But where BSIMM is based on practices of relatively large organisations that
are in the forefront regarding software security, and may thus be most relevant
for that type of organisations, the description of OpenSAMM clearly states that
it was designed with flexibility in mind, and should thus be useful for any type
of organisation, big or small.

We chose to base our study on BSIMM rather than OpenSAMM for two
reasons: we were more familiar with BSIMM; and BSIMM is a more descriptive
methodology that basically is designed to measure, while OpenSAMM has a
stronger prescriptive focus, i.e., to define “the right way to do it”.

2.1 OpenSAMM

The Software Assurance Maturity Model (SAMM or OpenSAMM) is an open
software security framework divided into four business functions: Governance,
Construction, Verification and Deployment. Each business function is composed
of three security practices, as shown below:

Governance: Strategy & Metrics; Policy & Compliance; Education & Guid-
ance

Construction: Threat Assessment; Security Requirements; Secure Architec-
ture

Verification: Design Review; Code Review; Security Testing
Deployment: Vulnerability Management; Environment Hardening; Operational

Enablement

Each practice is assessed at a maturity level from 1 to 3 (plus 0 for “no
maturity”), and for each maturity level there is an objective and two activities
that have to be fulfilled to achieve that level.

2.2 BSIMM

The Building Security In Maturity Model (BSIMM) measures which software
security activities are included in an organisation’s overall Secure Software De-
velopment Lifecycle (SSDL). A central concept in BSIMM is the Software Se-
curity Group (SSG), which is the person (or persons) responsible for software
security in an organisation. The SSG can be as small as a single person, it need
not be a formal role, and need not be a full-time position. In addition, there is



4 M. G. Jaatun et al.

the concept of “the satellite”; a more or less well-defined group of developers
who are not part of the SSG, but still have a special interest in and knowledge
of software security, and thus can operate as the extended arm of the SSG in
many contexts.

The purpose of BSIMM is to quantify the software security activities per-
formed in real software development projects in real organisations. As these
projects and organisations use different methodologies and different terminol-
ogy, it is necessary to use a framework that allows describing all initiatives in
a unified manner. The BSIMM framework consists of twelve practices organised
into four domains; Governance, Intelligence, SSDL Touchpoints and Deployment
(see Table 1). Each practice has a number of activities on three levels, with level
1 being the lowest maturity and level 3 is the highest. For example, for practice
Strategy and Metrics, SM1.4 is an activity on level 1, SM 2.5 is an activity on
level 2, and SM 3.2 is an activity on level 3.

Table 1. The BSIMM Software Security Framework

Governance Intelligence SSDL Touchpoints Deployment

Strategy and
Metrics

Attack Models Architecture Analysis Penetration Test-
ing

Compliance and
Policy

Security Features
and Design

Code Review Software Envi-
ronment

Training Standards and
Requirements

Security Testing Configuration
Management and
Vulnerability
Management

The starting point for the first BSIMM survey in 2008 [5] was to study
the software security activities performed by nine selected companies. The nine
companies were presumably far ahead in software security, and the activities that
were observed here formed the basis of the framework in Table 1. Representatives
from Cigital 3 physically visited each company, and these first surveys were done
by Gary McGraw and Sammy Migues personally, using a whole day for each
company.

3 Method

In this work we have performed a survey using a questionnaire with individ-
ual follow-up interviews [8]. The questionnaire (see Appendix A) is based on the
BSIMM software security framework as documented in the BSIMM V report [5].
The main function of BSIMM is to serve as a yardstick to determine where an

3 http://www.cigital.com



Software Security Maturity in Public Organisations 5

organisation stands compared with other organisations [5]. The questionnaire
tells us what activities the organisation has in place, and based on how well
they cover the various practices, we can determine the maturity level of each
organisation. BSIMM contends that a radar chart according to the high water-
mark method (based on three levels per practice) is sufficient to give a rough,
overall picture of maturity. We have chosen to also develop two complementary
maturity measures that can provide a more balanced view of maturity. The three
maturity measures we use are thus:

Conservative maturity (Scale 0-3): Here an organisation is approved at a
maturity level only if all the activities in the level are met (”Yes”), provided
all the activities on the lower level are also fulfilled. If the organisation per-
forms some (but not all) activities at a level this is indicated with a ”+”,
i.e., if you have 3 of 5 activities on the first level, the result is 0+; if all the
activities at level 1 are fulfilled, and 2 out of 4 activities at level 2 are ful-
filled, the result is 1+, etc. In connection with calculating the average value,
a “+” is counted as 0.5. As will be seen in Section 4, since few organisations
in our study do all the activities at level 1, many end up in the category 0+.

Weighted maturity (Scale 0-6): This value gives a greater emphasis for ac-
tivities at a high level, even if the lower level activities are not fully imple-
mented. The value is calculated using the following formula:

3∑
i=1

Observed activities at level i

Total number of activities at level i
× i

High Watermark Maturity (Scale 0-3): This value is calculated in the same
manner as in BSIMM [5]; if the organisation has at least one activity at level
3, it gets the maturity level 3. The high watermark maturity level therefore
only says something about what is the level of the highest rated activity they
perform. In contrast to the conservative maturity level, it is therefore easier
to reach a level 2 or 3 high watermark maturity level.

In our study it will be of most interest to compare the two first maturity
measures (conservative and weighted) from a given organisation with the average
values of all the studied organisations to see how they compare, as we have done
in the radar diagrams in Fig. 1.

We distributed the questionnaire in Appendix A in January 2015 via email to
32 Norwegian public organisations which we had reason to believe had ongoing
software development activities. 20 of these organisations returned fully filled-out
questionnaires. For seven of the responses, the questionnaire had been filled out
in cooperation by representatives involved in software development and in gen-
eral IT security work. In the other cases, the response was made either by people
working on information security or on IT in general (six responses), by people
working on software development (five responses), or the main responsibility
of the respondent was unclear based on the job title (two responses). In most
cases, at least one of the respondents had a managing role in the organisation,



6 M. G. Jaatun et al.

Fig. 1. Comparing an imaginary organisation with average of all organisations



Software Security Maturity in Public Organisations 7

e.g., information security manager, IT manager, group leader or architect. In
order to verify the answers and to clarify possible misunderstandings, we organ-
ised follow-up interviews with all the involved organisations during which their
answers were scrutinised and corrected whenever needed. The results were then
compiled and the conservative, weighted and high watermark maturity measures
were computed and analysed.

4 Results

In this section we present a selected set of the results from the study. For the
full results, the reader is referred to the report [3].

The organisations with the lowest maturity level declared that it performed
9 activities of 112, while the organisation with the highest level of maturity
performed 87 activities. Based on the boxplot chart in Fig. 2, we see that most
of the organisations come halfway up the scale; they perform on average 39% of
the activities.

0

10

20

30

40

50

60

70

80

90

100

110

BSIMM

Lower Quartile
Minimum
Median
Maximum
Upper Quartile

Fig. 2. The distribution of the total number of activities for all the organisations

The total number of activities for each of the organisations is shown in Fig. 3.
This figure shows the “raw score” for each organisation that participated in the
study.

4.1 Practices with a high degree of maturity

As can be seen in Fig. 4 and Table ??highlevel-table, we found the highest de-
gree of maturity among the surveyed organisations (“Observed Difi”) within
the practice Compliance and Policy (”Guidelines and compliance with laws and



8 M. G. Jaatun et al.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

# 
p
e
rf
o
rm

ed
 a
ct
iv
it
ie
s

Organisations

Fig. 3. The total number of activities (“raw score”) for each of the organisations

Table 2. High-level results

Areas Observed Difi Observed BSIMM

Strategy and Metrics 33% 45%
Compliance and Policy 66% 43%
Training 27% 24%
Attack Models 25% 29%
Security Features and Design 45% 41%
Standards and Requirements 48% 40%
Architecture Analysis 39% 35%
Code Review 35% 28%
Security Testing 32% 30%
Configuration Management and
Vulnerability Management

46% 43%

Software Environment 41% 42%
Penetration Testing 36% 49%



Software Security Maturity in Public Organisations 9

Fig. 4. High-level results illustrated

regulations”); more than 80% of the respondents answered yes to most of the
activities in this area. The result is not surprising, since it concerns public or-
ganisations in Norway, which usually are accustomed to adhere to standards
and government requirements. It is apparent that there is better adherence to
these practices among Norwegian public organisations than the average from the
official BSIMM study [5] (“Observed BSIMM”). It is also important to see the
positive maturity values in this area in the context of how businesses are organ-
ised. Many public organisations have their own lawyers who handle compliance,
and have a good overview of the requirements of laws and regulations. However,
it is not thus given that this expertise is applicable in software development
projects. In many cases there might be quite a long distance (physically and
organisationally) from the internal expertise related to laws and regulations to
the developers or the hired consultants that are central to software development.

Three other practices that received high maturity are Construction and in-
telligence, Security features and design, and Standards and Requirements). 80%
of the organisations say they do SFD1.2 (“Security is a regular part of our or-
ganisation’s software architecture discussion”) and 80% say that they do SR
2.3 (“We use a limited number of standard technology stacks”). Regarding the
latter, in most cases this meant that the organisation uses only Microsoft prod-
ucts (Microsoft Active Directory, Microsoft Internet Information Services, etc.)
in their software development and production processes.



10 M. G. Jaatun et al.

In the practice Configuration Management and Vulnerability Management,
85% of the organisations said that they satisfy CMVM1.1 (“The software security
group has procedures for incident response, in collaboration with the incident
response team (if it exists)”). They also claim that they do CMVM 2.2 (“We
track software DEFECTS found during operations until they are closed”), but
it seems as though many people equate this with their internal bug tracking
system that often does not take particular account of security flaws. In such
cases it is necessary that the security flaws are prioritized high enough that they
must be handled; if not, there is no guarantee that they actually closed within
a reasonable time. It is also unclear to what extent there are procedures for
cooperation during security incidents, but respondents says that developers will
be able to get involved when needed.

Finally, 90% of the organisations said that they meet SE1.2 (“We use ac-
cepted good practice mechanisms for host/network security”), but this is not
so surprising since this is strictly not about software security. Security seems
to have a relatively large focus amongst the people involved with the network,
operations and infrastructure. There are indications, however, that there is a dis-
tinction between the developers and the “security people” in the organisations.
One respondent stated that security can be perceived as an obstacle among their
developers, since those who work with security might restrict too much traffic
through firewalls etc. There is a different culture among those who work with
infrastructure than among those who are involved in the software development.

4.2 Practices with a low degree of maturity

According to our results, the area with the lowest maturity is Attack models,
followed closely by Strategy and Metrics. Regarding attack models, 80% stated
that they do AM1.5 (“The software security group keeps up to date by learning
about new types of attacks / vulnerabilities”), and 55% said they do AM 1.6
(“Build an internal forum to discuss attacks”) but all the other activities in the
AM practice are performed by fewer than 25% of the organisations.

One reason that these activities are performed only to a small extent may
be that these are activities that are very specifically related to security and
therefore come in addition to, or on top of, all the other activities that are being
done in the development process. During the follow-up interviews, several of the
organisations said they are fully aware that these are areas where they have a
potential for improvement. Regarding the two activities mentioned above that
relatively many do, several of the respondents indicated that these are largely
done outside the development environments. Those who work with operations
and infrastructure often get alerts or information on new attacks, and these are
discussed as needed. Respondents assume then that developers will be notified
of things that are relevant to them, but there seems to be little systematic effort
on monitoring attacks in the development environment. Several respondents said
that individual developers are adept at keeping up to date also in the security
field, for example, to gain knowledge about issues related to components they



Software Security Maturity in Public Organisations 11

use themselves, but this work seems to be relatively unstructured and largely
depends on the individual developer.

When it comes to work with strategy, there are some organisations that have
started some activities related to this, but few organisations currently have a
strategic and systematic approach to software security, where they clearly as-
sign responsibility, make plans and strategies, and follow up the implementation
and effectiveness. This could relate to the fact that few companies have a clear
answer to the question of who are the SSG. All the organisations do some ac-
tivities related to software security, and some do many, but since this is not
done systematically, it is difficult to say something about the effect of the work
done in organisations today related to this. On the basis of this investigation,
we can not say anything about the reasons for this, but some statements in the
interviews indicate that there is little awareness of the importance of software
security within the management. As an example, in one interview it was stated
that risk at the enterprise level was not relevant to software development.

4.3 Result Summary

To summarize, there is considerable variation in the maturity of the various or-
ganisations in the study. As can be seen in Fig. 2, the most mature organisation
has implemented 87 of the 112 activities, and the least mature has only imple-
mented 9. The average of the 20 businesses is about 44 of 112. If we look at
the three most mature businesses as illustrated in Fig. 5, we notice that, even
though the conservative maturity level for the practice Strategy and Metrics is
consistently low amongst all the top three organisations, there is an extreme
variation in the practice Code Review (ranging from 0.5 to 3).

5 Discussion

As became apparent during the follow-up interviews, the organisations that par-
ticipated in the study vary as to how much development they perform themselves,
and to what extent they use external consultants. A few rely solely on external
consultants, while many operate with a mix of internal and external developers.
Some largely purchase solutions from system vendors, and make adjustments
internally, while others develop the bulk of the solutions themselves. This affects
how they work with security, and also the extent to which they have an overview
of and control over their software security activities. Some of the respondents
had acquired input from their vendors on the questionnaire. Others had little
overview of what the vendors did in terms of activities related to information
security. This uncertainty applies both to training related to contractor devel-
opers as well as to what activities are performed in the development process.
The answers to the survey did not indicate that there are any differences in the
maturity levels that are due to how the software development teams are organ-
ised. However, it is clear that some of the organisations who participated in the
study have relatively high levels of expertise, resources and experience related



12 M. G. Jaatun et al.

Fig. 5. Conservative and weighted maturity for the three most mature organisations

to software development in general, while others have less experience with this.
At the same time, our results also show that there are many good practices also
among those who do not have a large number of developers. The two organisa-
tions that received the highest maturity scores (weighted maturity) have 10 to
20 developers in total (internal and contracted).

The BSIMM framework is based on the idea that there is a formally defined
software security group (SSG), and the activities are centered around this group.
Few of the surveyed organisations had such a formally defined group. Several
organisations have a manager with more or less explicit responsibility for software
security, but then usually as part of an overall security responsibility in the
organisation.

The method used in our study can be characterized as “assisted self-evaluation”;
the respondents from the various organisations indicated in a questionnaire
which software security activities that they do, and then they participated in
a follow-up interview with the purpose of clarifying uncertainties and correcting
possible errors in the questionnaire. During the interviews, many of the respon-
dents mentioned that they found it difficult to answer some of the questions in
the questionnaire. In some cases this was because they did not understand what
certain activities entailed, for example because they were not familiar with the
concepts and terminology that were used. In other cases, they lacked knowledge
about the practices in their own organisation or among their consultants and
vendors. In several cases, however, the uncertainty was linked to the challenge
of responding a simple “yes” or “no” to whether they perform a certain activity.
These cases were discussed in depth in the follow-up interviews, aiming to reach
a most equal assessment of the various organisations. In most cases the follow-up



Software Security Maturity in Public Organisations 13

interviews resulted in some changes to the original answers in the questionnaire.
It is also important to point out that some of the respondents seemed to have
different attitudes to the study. Some appeared keen to put forward as much as
possible of what they do in order to get a good score, while others were more
modest on their own behalf; feeling uncomfortable about the possibility that they
might claim to do an activity that they did not implement to the full extent.

Another uncertainty factor in our study is that the follow-up interviews were
conducted by three different researchers. However, they did synchronize their
assessment criteria, both before and during the interview phase, in order to
ensure that they had an as similar as possible perception of what is required to
receive a “yes” for the various activities in the questionnaire. However, it is still
possible that researchers may have made different assessments related to what
should be approved as an activity.

Since the study is based largely on self-evaluation, there is reason to believe
that the resulting “BSIMM-score” in our study is higher than it would be with a
review in line with the one made by Cigital in the original BSIMM study [2], since
we have not been in a position to verify the claims made by each organisation.
In concrete terms, this implies that we must assume that it has been easier
for the organisations to get an activity “approved” in our study than it would
be if Cigital had done the survey in accordance with its usual practice. This
means that although our results provide some indications of the maturity level
of the evaluated organisations, none of the organisations in our study can claim
that they have established their “BSIMM Score”. It would also be misleading
to compare their results directly with the official BSIMM reports. On the other
hand, the validity of the answers in our study were increased because of the
follow-up interviews, compared with the results from a pure survey. Furthermore,
using a questionnaire approach significantly lowers the threshold for initiating a
software security maturity study, and we maintain that it is a useful exercise for
determining a baseline.

BSIMM claims to be descriptive rather than normative, but by ranking ac-
tivities in maturity levels, there is an implicit statement that some activities are
“better” (or more mature) than others. However, a given organisation may have
good reasons for not doing a certain activity, but this will not be reflected in
the results from our study. Sometimes checklists have an option to specify “Not
relevant” to a given question, and it could be worth considering adding this to
the BSIMM yardstick as well.

6 Conclusion and Further Work

This study shows that the public organisations that we have studied are doing
a number of activities that contribute to security in the software they are de-
veloping. However, it is clear that few are working strategically with software
security, where they have a comprehensive and systematic approach and follow
up using metrics to evaluate the effectiveness of the various activities. Many of
the organisations are very dependent on the interest, competence and initiative



14 M. G. Jaatun et al.

of individual developers when it comes to keeping up to date on software se-
curity and ensuring that security is not forgotten in the development lifecycle.
This stands in contrast to the operations or network side of organisations, where
security seems to have a clear priority.

Most of the organisations that participated in our study seemed to be very
interested in the topic of software security, but many point out that they have
limited resources and this is also reflected in the results. Some stated clearly that
they have prioritized other areas in their effort to improve security, however, they
all seem to realise the importance of addressing software security as well.

In order to put public organisations in a position to work strategically and
systematically with software security, it is important to implement training ac-
tivities on this topic. Thus far, software security seems to be a very small part
of efforts to increase knowledge and awareness of information security in the
various organisations.

Several respondents commented that they found many of the governance-
related activities more difficult to perform when using an agile development
method. This would indicate that there is a need for further study on how to
ensure software security in an agile environment. It would also be interesting
to compare our results with a similar study on private sector organisations in
Norway, which is something we hope to be able to initiate later this year.

Acknowledgment

The research reported in this paper was commissioned by the Norwegian Agency
for Public Management and eGovernment (Difi), and partially funded by the EU
FP7 project OPTET, grant number 317631.

References

1. Hope, P.: Why measurement is key to driving improvement in software secu-
rity. Developer Tech (2014), http://www.developer-tech.com/news/2014/mar/06/
why-measurement-key-driving-improvement-software-security/

2. Jaatun, M.G.: Hunting for Aardvarks: Can Software Security Be Measured? In:
Quirchmayr, G., Basl, J., You, I., Xu, L., Weippl, E. (eds.) Multidisciplinary Re-
search and Practice for Information Systems, Lecture Notes in Computer Science,
vol. 7465, pp. 85–92. Springer Berlin Heidelberg (2012), http://dx.doi.org/10.
1007/978-3-642-32498-7_7

3. Jaatun, M.G., Tøndel, I.A., Cruzes, D.S.: Modenhetskartlegging av programvare-
sikkerhet i offentlige virksomheter. Tech. Rep. A26860, SINTEF ICT (2015), http:
//sintef.no/publikasjoner/publikasjon/?pubid=SINTEF+A26860

4. McGraw, G.: Software security. Security & Privacy, IEEE 2(2), 80–83 (Mar 2004)
5. McGraw, G., Migues, S., West, J.: Building Security In Maturity Model (BSIMM

V) (2013), http://bsimm.com
6. Norwegian Ministries: Cyber Security Strategy for Norway (2012), https:

//www.regjeringen.no/globalassets/upload/fad/vedlegg/ikt-politikk/

cyber_security_strategy_norway.pdf



Software Security Maturity in Public Organisations 15

7. OpenSAMM: Software Assurance Maturity Model (SAMM): A guide to building
security into software development, http://www.opensamm.org/

8. Robson, C.: Real World Research. John Wiley & Sons, 3 edn. (2011)

A Questionnaire

The questionnaire is taken from the BSIMM activity descriptions [5], with only
minor textual modifications. Note that the official BSIMM study does not rely
on questionnaires. As mentioned before, BSIMM ranks activities on three levels,
but we decided not to show this to the respondents; we also re-arranged some
activities, placing variations on the same activity together even though they are
on different levels in the BSIMM description.

A.1 Governance

Strategy & Metrics

– We publish our process for addressing software security; containing goals, roles, responsibilities
and activities.

– We have a secure software evangelist role to promote software security internally.
– We educate our executives about the consequences of inadequate software security.
– We have identified gate locations in our secure software development process where we make

go/no go decisions with respect to software security.
– We enforce the identified gate locations in our secure software development process where we

make go/no go decisions with respect to software security, and track exceptions.
– We have a process of accepting security risk and documenting accountability. In this process

we assign a responsible manager for signing off on the state of all software prior to release.
– The software security group publishes data internally on the state of software security within

the organisation.
– In addition to the software security group, we have also identified members of the development

teams that have a special interest in software security, and have a process for involving them
in the software security work.

– We have identified metrics that measure software security initiative progress and success.
– The software security group has a centralized tracking application to chart the progress of all

software.
– The software security group advertises the software security initiative outside the organization

(for example by writing articles, holding talks in conferences, etc).

Policy & Compliance

– The software security group has an overview of the regulations that our software has to comply
with.

– We have a software security policy to meet regulatory needs and customer demands.
– The software security group is responsible for identifying all legislation related to personally

identifiable information (for example personopplysningsloven).
– We have identified all the personally identifiable information stored by each of our systems and

data repositories.
– All identified risks have to be mitigated or accepted by a responsible manager.
– We can demonstrate compliance with regulations that we have to comply with.
– We make sure that all vendor contracts are compatible with our software security policy.
– We promote executive awareness of compliance and privacy obligations.
– We have all the documentation necessary for demonstrating the organisation’s compliance with

regulations we have to comply with (for ex. written policy, lists of controls, artifacts from
software development).

– When managing our third party vendors, we impose our software security policies on them.
– Information from the secure software development process is routinely fed back into the policy

creation process.



16 M. G. Jaatun et al.

Education & Guidance

– We have a security awareness training program.
– We offer role-specific security courses (for example on specific tools, technology stacks, bug

parade).
– The security awareness training content/material is tailored to our history of security incidents.
– We deliver on-demand individual security training.
– We encourage security learning outside of the software security group by offering specific train-

ing and events.
– We provide security training for new employees to enhance the security culture.
– We use the security training to identify individuals that have a particular interest in security.
– We have a reward system for encouraging learning about security.
– We provide security training for vendors and/or outsourced workers.
– We host external software security events.
– We require an annual software security refresher course.
– The software security group has defined office hours for helping the rest of the organization.

A.2 Construction / Intelligence

Attack Models

– We build and maintain a top N possible attacks list.
– We have a data classification scheme and an inventory of attacks so we can prioritize applications

by the data handled by them.
– We maintain a list of likely attacker profiles.
– We collect and publish attack stories.
– The software security group keeps up to date by learning about new types of attacks / vulner-

abilities.
– We have an internal forum to discuss attacks.
– We link abuse cases to each attacker profile.
– We have a list of technology-specific abuse cases.
– We have an engineering team that develops new attack methods.
– We have automated the attack methods developed by our engineers.

Security Features and Design

– Our software security group builds and publishes a library of security features.
– Security is a regular part of our organization’s software architecture discussion.
– The software security group facilitates the use of secure-by-design middleware frameworks/common

libraries.
– The software security group is directly involved in the design of security solutions.
– We have a review board to approve and maintain secure design patterns.
– We require the use of approved security features and frameworks.
– We find and publish mature design patterns from the organization.

Standards and Requirements

– The software security group create standards that explain the accepted way to carry out specific
security centric operations.

– We have a portal where all security related documents are easily accessible.
– The software security group assists the software development team in translating compliance

constraints (for instance from legislation) into application specific security requirements.
– We use secure coding standards in our software development.
– We have a standards review board to formalize the process used to develop security standards.
– We use a limited number of standard technology stacks.
– We have a template SLA text for use in contracts with vendors and providers, to help prevent

compliance and privacy problems.
– We have procedures to communicate and promote our security standards to vendors.
– We have a list of all open source components used in our software.
– We manage the risks related to using open source components.



Software Security Maturity in Public Organisations 17

A.3 Verification / Touchpoints

Design Review / Architecture Analysis

– We perform security feature review.
– We perform design review for high-risk applications.
– We have a software security group that leads review efforts.
– We use a risk questionnaire to rank applications in terms of the risk they are exposed to.
– We have a defined process to do architecture analysis.
– We have a standardized format for describring architecture that also covers data flow.
– The software security group is available to support architecture analysis when needed.
– The software architects lead design review efforts to detect and correct security flaws.
– Failures identified during architecture analysis are used to update the standard architecture

patterns.

Code Review

– We create a list with top N software security defects list.
– The software security group does ad-hoc code reviews.
– We use automated tools (such as static analysis) along with manual review to detect software

security defects.
– We make code review mandatory for all projects before release.
– The software security defects found during code review are tracked in a centralized repository.
– We enforce coding standards to improve software security.
– We have mentors for code review tools for making most efficient use of the tools.
– We use automated tools with tailored rules to improve efficiency and reduce false positives.
– We combine assessment results so that multiple analysis techniques feed into one reporting and

remediation process.
– When a software defect is found we have tools to search for that defect also in the whole

codebase.
– We perform automated code review on all code to detect malicious code.

Security Testing

– We perform adversarial tests with edge and boundary values.
– We create our tests based on existing security requirements and security features.
– We integrate black box security tools into the testing process (including protocol fuzzing).
– We share security test results with QA.
– We include security tests in QA automation.
– We perform fuzz testing customized to application APIs.
– We base the security tests on the security risks analysis.
– We use code coverage tools to ensure that security tests cover all parts of the code.
– We write tests cases based on abuse cases provided by the software security group.

A.4 Deployment

Configuration and Vulnerability Management

– The software security group has procedures for incident response, in collaboration with the
incident response team (if it exists).

– We are able to make quick changes in the software when under attack.
– We perform drills to ensure that incident response capabilities minimize the impact of an attack.
– We identify software defects found in operations (for ex. by intrusion detection systems) and

feed back to development.
– We track software defects found during operations until they are closed.
– We maintain a matrix of all installed applications in order to identify all places that need to

be updated when a piece of code needs to be changed.
– When a software defect is found in a piece of code during operations we have a process to search

for that defect also in the whole codebase.
– We do software security process improvement based on the analysis of cause of software defects

found in operations.
– We have a system for paying rewards to individuals who report security flaws in our software.



18 M. G. Jaatun et al.

Software Environment

– We monitor the input to software we run in order to spot attacks on our software.
– We use accepted good practice mechanisms for host/network security.
– The software security group creates and publishes installation guides to ensure that our software

is configured securely.
– We create digital signatures for all binaries that we deliver.
– We use code protection such as obfuscation to make reverse engineering harder.
– We monitor the behavior of our software looking for misbehavior and signs of attacks.

Penetration Testing

– We use external penetration testers on our software.
– Defects found in penetration testing are inserted in our bug tracking system and flagged as

security defects.
– We use penetration testing tools internally.
– The penetration testers have access to all available information about our software (for example:

the source code, design documents , architecture analysis results and code review results).
– We periodically perform penetration tests on all our software.
– We use external penetration testers to do deep-dive analysis for critical projects to complement

internal competence.
– The software security group has created customized penetration testing tools and scripts for

our organization.


