Preprint - accepted for publication

Software Security Activities that Support Incident Management
in Secure DevOps

Martin Gilje Jaatun
SINTEF Digital
Trondheim, Norway

ABSTRACT

Many software services are currently created using DevOps, where
developers and operations personnel are more tightly integrated.
The DevOps paradigm enables shorter development cycles, but in-
creased speed has raised concerns over whether security issues may
be overlooked. However, perfect security is never achievable, and
in addition to the proactive software security efforts, we also need
a reactive effort to handle flaws and bugs that are not discovered
before they are used in an attack. In this paper we explore how
focus on incident management and collaboration with developers
can contribute to improved software security.

CCS CONCEPTS

« Security and privacy — Software security engineering;

KEYWORDS

DevOps, Software Security, Incident Management

ACM Reference Format:

Martin Gilje Jaatun. 2018. Software Security Activities that Support Incident
Management in Secure DevOps. In Proceedings of SSE2018. ACM, New York,
NY, USA, 6 pages. https://doi.org/xxxx

1 INTRODUCTION

DevOps is not a new development paradigm, but has reached in-
creased prominence recently. In DevOps, the barriers between de-
velopers and operations are lowered, sometimes to the point that
the slogan “you build it — you run it” becomes reality. For most
DevOps shops operating in the Cloud, this is also coupled with
continuous deployment, where new versions of software systems
can be deployed several times a day. This mode of working is really
taking agility to a new level, but some doubts remain: How can we
ensure security if new versions get deployed without the customary
battery of security tests? Our answer is by paying proper attention
to incident management.

By proactively employing software security practices [12], de-
velopers can avoid many mistakes that cause vulnerabilities in
software; but since developers are only human, it is never possible

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SSE2018, August, 2018, Hamburg, Germany

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN xxxxx...$15.00

https://doi.org/xxxx

to guarantee that any piece of software in perfectly secure. It there-
fore behooves any service provider to also have a second line of
defense, where any flaws and bugs that are not discovered before
they are used in an attack can be handled.

The remainder of the paper is structured as follows: In Section 2
we present relevant background. We present an analysis of secure
software activities that are relevant for incident response in Section
3, and we discuss these further in Section 4. We offer conclusions
in Section 5.

2 BACKGROUND

Incident management and software development have not tradi-
tionally been seen as going hand in hand; in the following we will
give some brief background of the field of software security before
moving on to incident management and existing work on DevOps
security.

2.1 What is Software Security?

Software security is not about implementing security mechanisms
in software, but concerns how to develop (ordinary) software in
such a manner that it cannot easily be attacked [9].

The Building Security In Maturity Model (BSIMM) [12] is a soft-
ware security framework of four domains each broken down into
three practices, where each practice consists of a collection of con-
crete and measurable software security activities. BSIMM is an
attempt to address the difficulty of measuring software security
directly; given two pieces of software solving the same problem,
it is effectively impossible to say which is “more secure”. Instead,
McGraw and colleagues decided to measure second-order effects,
i.e., identify which software development activities contribute posi-
tively to software security, and measure to what extent these are
performed in a given organization. A large number (113 in the latest
installment) of software development organizations have been mea-
sured against the BSIMM framework, and thus there are grounds
to claim that the BSIMM report [12] documents the real software
security activities performed by real software development organi-
zations.

Based on the BSIMM framework, we have previously conducted
an assisted self-assessment of 20 public sector development orga-
nizations, and since then we have performed a further 6 assisted
self-assessments of software security activities in private sector
development organizations. It may be dangerous to compare our
results with the BSIMM numbers, both due to the small number
of organizations involved in our studies, and because the official
BSIMM measurement are likely to be more rigorous than we had
the opportunity to be. The reliance on self-assessment leaves us
open to optimistic bias on the responders’ side [16], since a natural
reflex when doing any kind of assessment is to strive for the “best

https://doi.org/xxxx
https://doi.org/xxxx

SSE2018, August, 2018, Hamburg, Germany

Figure 1: The ISO/IEC 27035 Incident Management Cycle

possible” score. However, we have found that even when accepting
these limitations, self-assessments using the BSIMM framework
have provided a useful starting point for working with software
security in development organizations.

2.2 Computer Security Incident Management

Computer security incident management is unfortunately not an
area where a lot of empirical research is being published [18], but
even so it is a well-established field documented by international
standards. The ISO/IEC 27035 standard [7] divides the incident
handling process into five phases, as illustrated in Figure 1. The Plan
and prepare phase (Plan) is an ongoing, continuous improvement
process where plans are made, defenses are mounted, and troops
are trained. The Detection and reporting phase (Detect) can be short,
but crucial - this is where an incident is detected, by automatic or
manual means. The Assessment and decision phase (Assess) tries
to determine what happened, surveys the damage and determines
how the incident should be handled. The Responses phase (Respond)
is where the actual handling takes place, including post-incident
mopping-up and restoring systems to regular service. Finally, in the
Lessons Learned phase (Learn), the responders and the rest of the
organization takes a step back to learn from the incident, noting
what worked well and areas for improvement. This naturally feeds
back into the Plan phase; updating plans, training activities and
countermeasures as appropriate.

Incident response is the natural habitat of system administra-
tors; in larger organizations there may even be permanent incident
response teams (IRTs) ready to deploy! at a moment’s notice. Tra-
ditionally, IRTs have not needed to worry about developers, since
systems were either made by someone else, or produced locally with
6-month release cycles. However, with DevOps this has changed:
When incidents happen, you need to determine if a bug or a flaw
was the cause - if so, said bug or flaw needs to be fixed post haste.
DevOps and continuous deployment enables such rapid fixing, but

no pun intended

Martin Gilje Jaatun

it also means that developers need to be clued into the incident
response process.

Nearly a decade ago, Grobauer and Schreck [5] published a paper
outlining some research needs related to incident management in
the cloud. Unfortunately, there has been very limited research in
this space since then, and much of that which has been published
seems to focus rather narrowly on forensics issues [14], and fails
to take into account the peculiarities of the cloud, such as the po-
tentially long provider chains. Furthermore, the existing literature
on incident handling does not consider interaction with software
developers.

2.3 DevOps Security in the Literature

Much of the literature related to DevOps security seems to be blog
entries and other non-validated channels. In one such blog [6], the
idea that DevOps provides any security benefits in and of itself is
challenged. Kim [10] argues that by integrating security testing
into the daily operations of Dev, defects are found (and fixed) more
quickly than before, but states “... it must be tested before the code is
deployed", indicating a reluctance to rely on catching security bugs
post deployment. This might seem contradictory, since a problem
with agile development in general seems to be that developers
“do not have time to think about security”, and thus might not be
qualified to identify which components that need extra testing.
Furthermore, it is a tenet that “you cannot test yourself to security”
[11].

Ur Rahman and Williams [19] studied 66 internet “artifacts”
(blogs etc.), and then performed interviews with nine DevOps or-
ganizations. Roughly half (32) of the artifacts provide input on
security, and Ur Rahman and Williams list the following DevOps
activities as contributing to improved security:

Automated monitoring (mentioned in 13 artifacts)
Automated deployment pipeline (8)

Automated deployment (3)

Automated testing of software changes (3)
Software delivery in small increments (3)

On the other hand, the artifacts indicate the following DevOps
activities as detrimental to software security:

e Use of immature automated deployment tools (2)
e Use of unsuitable metrics (2)
e Insufficient monitoring of collaboration (1)

Mohan and ben Othmane [13] attempted to perform a mapping
study on security in DevOps, but found very few primary studies;
mostly trade conference presentations and blogs (similar to the
artifacts above). Yasar and Kontostathis [20] propose focusing on
security requirements, threat modeling, environment configura-
tion, static analysis, code review, penetration testing, environment
testing, and finally a manual security review. They claim that quick
incident response is an implicit benefit of such an approach, but
do not offer any empirical evidence to support the claim. Incident
response in mentioned by de Feijter [3] several times as a factor in
DevOps maturity.

Software Security Activities that Support Incident Management in Secure DevOps

3 INCIDENT MANAGEMENT AND
SOFTWARE DEVELOPMENT

There are several possible approaches when seeking to marry soft-
ware security with incident response; we could ask:

e What software security activities can support incident re-
sponse in secure DevOps?
e What are the most frequent IR-related swsec activities ?

The first of these questions could be answered indirectly by
analyzing the BSIMM activity descriptions [12], and the answer to
the second question would then follow directly from the BSIMM
statistics.

Below we enumerate the BSIMM activities that are directly rele-
vant to incident response in a DevOps setting.

SM2.3 Create or grow a satellite
The presence of security-minded developers across the orga-
nization will aid in resolving quick fixes in case of incidents.
The term “satellite” is the one used in the BSIMM; some or-
ganizations have formalized this as a security champion for
some or all development teams.

CP2.1 Identify PII data inventory
Due to GDPR [4], it will be paramount to know what kind
of Personal Identifiable Information (PII) is handled by the
system under attack, and where in the system it is stored or
handled.

T3.5 Establish SSG office hours
In case of an incident, the handlers will benefit from having
an available point of contact for software security issues.

AM2.7 Build an internal forum to discuss attacks
In order to learn from attacks, they need to be discussed -
both to improve handling and to update software so that the
same attack cannot succeed twice.

SR3.1 Control open source risk
If an attack is due to an open source vulnerability, you need
to know which components use the library in question.

SE1.1 Use application input monitoring
Monitoring the input to your application can help detecting
an attack as it happens.

SE3.3 Use application behavior monitoring and diagnostics
Monitoring the behavior of your application can help detect-
ing an attack as it happens.

CMVM1.1 Create or interface with incident response
To have any hope of being able to make software changes
quickly enough when an attack is manifest, there must be
an interface between developers and incident response.

CMVM1.2 Identify software defects found in operations and
feed them back to development
This has the dual effect of learning from incidents and im-
proving the development lifecycle.

CMVM2.1 Have emergency codebase response
When a software related attack occurs, it is important to be
able to make quick changes in order to stop the attack and
prevent the same type of attack to occur again.

CMVM2.3 Develop an operations inventory of applications
This extends SR3.1 by creating a complete overview of which
libraries and/or components are used in which applications.

SSE2018, August, 2018, Hamburg, Germany

Table 1: Mapping BSIMM Activities to ISO/IEC 27035 Phases

Plan Detect Assess Respond Learn
SM2.3 SE1.1 (SM23) CMVM2.1 CMVML.2
CP2.1 SE3.3 (CP2.1) (SM2.3) AM2.7
T3.5 (T3.5) (T3.5)

SR3.1 (SR3.1)

CMVML.1 (CMVML.1)

CMVM2.3 (CMVM2.3)

CMVM3.3

CMVM3.3 Simulate software crises
This implies running preparedness exercises involving both
incident responders and developers.

These software security activities can be mapped to the ISO/IEC
27035 phases as illustrated in Table 1. At first glance, it might seem
that the majority of the activities relate to the Plan phase, with little
or no activities related to the last three phases. However, many
of the activities in the Plan phase are directly relevant for other
phases; e.g., SM2.3 creates a virtual team of software security savvy
developers who can be called on in the Assess and Respond phases.
This is indicated in Table 1 by putting activities in parenthesis in
the relevant phases.

Is it reasonable to expect that software security activities should
support the Assess phase? Certainly, most developers will not have
a primary focus on security, but if the organization has a satellite of
security champions, these represent a natural sounding board when
the Incident Response Team (IRT) stumbles upon something that
doesn’t smell right. Actually, an incident may not even reach the IRT
before the satellite is involved if the incident is first discovered by
the the customer support function due to some functional deviation;
we could envision the support function first conferring with a
security champion before deciding that the incident indeed is a
security incident.

In Figure 2 we illustrate to what extent the BSIMM software
security activities we identified as being relevant for the ISO/IEC
27035 “Plan” phase have been adopted in three segments we in-
troduced in section 2.1; the BSIMMS organizations, the 20 public
sector organizations, and the 6 industry organizations.

There are some surprising differences, but the seemingly large
adoption of T3.5 (SSG Office hours) among the local industry may
be attributable to the fact that those that say they have an SSG
typically only have a single employee in this (part-time) role, and
state “T am always here”. It is perhaps less surprising that the pre-
dominantly US BSIMM organizations are less worried about PII
than their European counterparts, but this is a situation that will
be interesting to monitor as US vendors realize they have to worry
about GDPR if they plan to offer their services in the European
market.

One important statistic is CMVM3.3 (simulate SW crisis), which
shows that only a negligible percentage of the BSIMM organizations
involve teh developers in their emergency preparedness exercises

SSE2018, August, 2018, Hamburg, Germany

(if they have any). The numbers are slightly higher for the European
organizations, but our interactions with these organizations seem
to confirm that this is an issue that most of them have not been
been aware of.

90 %
80 %
70 %
60 %

50%
40%
30%
20%
10% N B F B N e B

0%
CMVM1.1 CMVM2.3 CMVM3.3

SM2.3 CpP2.1 T3.5 SR3.1

HBSIMM8 ®Pub20 ®Industry

Figure 2: Activities Related to the Incident Response Plan
Phase in Different Segments

There are only two BSIMM activities directly related to the “De-
tect” phase, as shown in Figure 3. Interestingly, we can see here
that whereas the three segments are roughly on par with respect
to SE1.1 (monitor input), our local samples have a dramatically
higher adoption rate of SE3.3 (behavior monitoring). There is no
obvious explanation to why this should be the case, but the small
sample size of the industry organizations may skew the results in
that case. A possible explanation for the high adoption rate in the
public sector organizations may be that they generally deal more
with PII, and thus are more compelled to monitor behavior.

80 %
60 %
40 %

20 %

0%

SE3.3

SE1.1

H BSIMMS8 ™ Pub20 mIndustry

Figure 3: Activities Related to the Detect Phase in Different
Segments

The only primary activity related to the Respond phase is CMVM2.1
(emergency codebase response), and as can be seen from Figure 4,
the BSIMM organizations are about the same as the local industrial
sample (" 80%), but the public sector organizations see significantly
lower adoption (60%).

Martin Gilje Jaatun

mBSIMM8
W Pub20

M Industry

CMVM1.2

Figure 4: Activities Related to the Respond Phase in Differ-
ent Segments

90 %
80 %
70%
c0% HBSIMM8

9,
50% B Pub20

9
40% o Industry
30%
20%

10%

0%
AM2.7 CMVM1.2

Figure 5: Activities Related to the Learn Phase in Different
Segments

4 DISCUSSION

The BSIMM framework was initially created in 2008, and at that
time neither Cloud Computing nor DevOps were generally known
terms. Even though new software security activities have been
added to the framework over the years, it is reasonable to ask: Do
we need additional software activities to handle DevOps incidents?
Companies may also do other software security relevant activities
that support incident management, but that are not currently part
of BSIMM, and that therefore do not show up on the graph.

It is likely that incident handlers at some point need additional
information from developers in the Assess phase - but that would
not necessarily be considered a software security activity in itself.
The key BSIMM activity is of course CMVM1.1 (interface with inci-
dent response); once this is established it should be easy to answer
the question “Who you gonna call?” [8]. A vast majority of the
BSIMM organizations [12] perform this activity, as do about 60 % of
the local organizations we have surveyed. For larger organizations
with a significant Software Security Group (SSG), that will be the
natural point of contact; but none of our local organizations are

Software Security Activities that Support Incident Management in Secure DevOps

large enough to have a full-time SSG, and another approach is thus
needed. It is tempting to assign this responsibility to the security
champions in the satellite, but that could be counter-productive in
the long run. Being a security champion should be a bonus, not
something that generates extra work and inhospitable hours. A
better option would be to create a rota of all developers, ensuring
that there is always someone to call if the need arises. However,
for this to work, it is imperative to train the tier-1 responders to a
minimum level in order to avoid spurious calls to the developers.

Just as smaller software companies are unlikely to have a full-
time SSG, they are unlikely to have a full-time IRT. This implies
that a virtual IRT must be created, usually starting with a core
operations team. This team would naturally be augmented with the
software security champions during working hours; this would be
how CMVM1.1 would be achieved in practice in a small organiza-
tion.

Traditional incident response management is focused on run-
ning of servers running commodity operating systems with some
standard server applications, such as web servers, mail servers and
database servers. In the recent years before the cloud era, such sys-
tems were bought, rather than built. This implied that if a software
vulnerability was found, the incident response team need to depend
on the software vendor to supply a patch or update; generally there
were no or few “user-serviceable parts inside”.

In DevOps, there is no difference between deploying a security
patch and and any other change - both can happen several times a
day. This implies that the organization need to have higher focus
on incident response, also by developers. The need for a patch can
arrive at any time, and the developers should expect this.

Ben Othmane et al. [1] list added cost as a disadvantage of the
agile security engineering scheme they propose. However, one
could argue similarly that fixing syntax errors in the code introduces
extra work and associated costs, but no one would propose that such
errors should not be fixed in order to save money. Furthermore, it is
necessary to consider the total lifecycle cost of a software product,
and it is actually cheaper to fix errors at the design or coding stage
than when they are discovered after deployment [2]. However, the
dramatic differences that Boehm refer to may be less noticeable
when we are talking about DevOps; the big difference presumably
comes when SW is shrink-wrapped and shipped, and updating
something which is only sold as a service is clearly less arduous.

On the other hand, whereas incident response is something that
traditionally would have been an externality [17] for a software
development organization that sells shrink-wrapped software, it
becomes a vital business function for a DevOps shop offering soft-
ware as a service. Thus, the cost of of incident response is less of
an issue in terms of determining whether or not you need to do it,
but doing it in the most cost-effective way will of course always be
important.

We have argued that software security education of developers is
more important in agile development than in traditional waterfall,
stopping short of teaching every developer to be a software security
expert, but aspiring to teach every developer enough to enable them
to identify areas where they would benefit from the advice of an
expert. This education would need to be extended to also cover

SSE2018, August, 2018, Hamburg, Germany

incident response with respect to the developers, but as mentioned
it cuts both ways; the front line incident handlers need to know
something about development as well. One obvious approach to this
is to include the developers in general incident response exercises.
With a properly defined incident response scenario, such an exercise
would provide training to both dev and ops, but would also possibly
help in identifying additional activities that are currently not part
of the organization’s SSDL.

DevOps success is tightly coupled to the available toolchain, and
the rapid deployments are only possible due to tightly configured
deployment scripts. Communications between Dev and Ops is also
vital in any situation where they are not actually the same persons.
It therefore becomes important to establish who should know what.
This implies that the tools used for incident response need to be
integrated with the tools already used by the developers, and vice
versa.

One challenge with using BSIMM as a blueprint for adding sup-
port for incident response in DevOps is that unlike OpenSAMM [15],
BSIMM is descriptive, not prescriptive. This means that the BSIMM
report [12] documents the adoption rate of IR-relevant software
security activities among a specific (non-random) set of develop-
ment organizations, but it does not make value judgments of the
sort “you should do activity X”. This is more explicitly done in
OpenSAMM, but the fixed structure of only two (cumulative) ac-
tivities per OpenSAMM maturity level makes us question whether
it would ever be possible to get all the relevant activities fit the
framework. In other words, if there are any IR-relevant software
security activities missing from BSIMM they could be added, but
in the case of OpenSAMM one would always need to maintain a
“shadow” list of software security activities that come in addition
to the ones used for calculating the maturity level.

5 CONCLUSION

Failing fast is a virtue in agile development, but when transported
to a DevOps situation, all failures become public. This could be
seen as a potential public relations nightmare, and many companies
are thus wary of making the leap to a full continuous deployment
DevOps shop. We have in this paper argued that proper attention
to incident management, and ensuring that the developers are
included as part of the incident management lifecycle, can reduce
this risk to manageable proportions, allowing more companies to
reap the benefits of DevOps without sacrificing security.

We will continue to work with our partner software development
organizations to establish the optimal integration between software
developers and incident responders, in particular through running
and evaluating exercises.

ACKNOWLEDGMENT

To be added after review

REFERENCES

[1] Lotfi ben Othmane, Pelin Angin, Harold Weffers, and Bharat Bhargava. 2014. Ex-
tending the Agile Development Approach to Develop Acceptably Secure Software.
IEEE Transactions on Dependable and Secure Computing (2014).

SSE2018, August, 2018, Hamburg, Germany

(2]

[3

[4

=

i}

[10]

[11
[12]

[13

[14]

[15]

(16

[17

[18]

[19]

[20]

Barry Boehm and Victor R Basili. 2005. Software defect reduction top 10 list.
In Foundations of empirical software engineering: the legacy of Victor R. Basili.
Vol. 426.

Rico de Feijter. 2017. Towards the adoption of DevOps in software product organi-
zations: A Maturity model approach. Master’s thesis.

EU. 2016. Position of the Council at first reading with a view to the adoption of a
REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on
the protection of natural persons with regard to the processing of personal data
and on the free movement of such data, and repealing Directive 95/46/EC (General
Data Protection Regulation). LEGISLATIVE ACTS AND OTHER INSTRUMENTS 16,
5419 (2016). http://data.consilium.europa.eu/doc/document/ST-5419-2016-INIT/
en/pdf

Bernd Grobauer and Thomas Schreck. 2010. Towards Incident Handling in the
Cloud :. In Proceedings of the 2010 ACM Workshop on Cloud Computing Security.
ACM, Chicago, Illinois, USA, 77-85. https://doi.org/10.1145/1866835.1866850
George V. Hulme. 2015. The Myth of DevOps as a Catalyst
to improve Security? (2015). http://devops.com/2015/07/16/
the-myth-of-devops-as-a-catalyst-to-improve-security/

ISO 2011. ISO/IEC 27035:2011 Information technology - Security techniques -
Information security incident management. (2011).

Ivan Reitman (dir.), Dan Aykroyd (Writ.), Harold Ramis (Writ.), Bill Murray (Perf.),
Dan Aykroyd (Perf.), and Sigourney Weaver (Perf.). 1984. Ghostbusters. Motion
picture. (1984). Columbia Pictures.

Martin Gilje Jaatun. 2017. Secure Software Engineering is not About Security
Features. International Journal of Secure Software Engineering 8, 2 (2017), iv.
Gene Kim. 2012. Top 11 Things You Need to Know About DevOps.
(2012). https://www.thinkhdi.com/~/media/HDICorp/Files/White-Papers/
whtppr-1112-devops-kim.pdf

Gary McGraw. 2006. Software Security: Building Security In. Addison-Wesley.
Gary McGraw, Sammy Migues, and Jacob West. 2017. Building Security In
Maturity Model (BSIMM 8). (2017). http://bsimm.com.

Vaishnavi Mohan and Lotfi ben Othmane. 2016. SecDevOps: Is It a Marketing
Buzzword? - Mapping Research on Security in DevOps. In 2016 11th International
Conference on Availability, Reliability and Security (ARES). 542-547. https://doi.
org/10.1109/ARES.2016.92

Victor Ion Munteanu, Andrew Edmonds, Thomas M. Bohnert, and Teodor-Florin
Fortis. 2014. Cloud Incident Management, Challenges, Research Directions, and
Architectural Approach. In Proceedings of the 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing (UCC ’14). IEEE Computer Society,
Washington, DC, USA, 786-791. https://doi.org/10.1109/UCC.2014.128
OpenSAMM. [n. d.]. Software Assurance Maturity Model (SAMM): A guide to
building security into software development. ([n. d.]). http://www.opensamm.
org/.

Hyeun-Suk Rhee, Young U. Ryu, and Cheong-Tag Kim. 2012. Unrealistic optimism
on information security management. Computers & Security 31, 2 (2012), 221 —
232. https://doi.org/10.1016/j.cose.2011.12.001

Bruce Schneier. 2007. Information Security and Externalities. Schneier on Security
Blog. (2007). https://www.schneier.com/blog/archives/2007/01/information_sec_
1.html

Inger Anne Tondel, Maria B. Line, and Martin Gilje Jaatun. 2014. Information
security incident management: Current practice as reported in the literature.
Computers & Security 45, 0 (2014), 42 - 57. https://doi.org/10.1016/j.cose.2014.05.
003

Akond Ashfaque Ur Rahman and Laurie Williams. 2016. Software Security in
DevOps: Synthesizing Practitioners’ Perceptions and Practices. In Proceedings of
the International Workshop on Continuous Software Evolution and Delivery (CSED
’16). ACM, New York, NY, USA, 70-76. https://doi.org/10.1145/2896941.2896946
Hasan Yasar and Kiriakos Kontostathis. 2016. Where to Integrate Security Prac-
tices on DevOps Platform. International Journal of Secure Software Engineering 7,
4 (2016), 39-50. https://doi.org/10.4018/IJSSE.2016100103

Martin Gilje Jaatun

http://data.consilium.europa.eu/doc/document/ST-5419-2016-INIT/en/pdf
http://data.consilium.europa.eu/doc/document/ST-5419-2016-INIT/en/pdf
https://doi.org/10.1145/1866835.1866850
http://devops.com/2015/07/16/the-myth-of-devops-as-a-catalyst-to-improve-security/
http://devops.com/2015/07/16/the-myth-of-devops-as-a-catalyst-to-improve-security/
https://www.thinkhdi.com/~/media/HDICorp/Files/White-Papers/whtppr-1112-devops-kim.pdf
https://www.thinkhdi.com/~/media/HDICorp/Files/White-Papers/whtppr-1112-devops-kim.pdf
http://bsimm.com
https://doi.org/10.1109/ARES.2016.92
https://doi.org/10.1109/ARES.2016.92
https://doi.org/10.1109/UCC.2014.128
http://www.opensamm.org/
http://www.opensamm.org/
https://doi.org/10.1016/j.cose.2011.12.001
https://www.schneier.com/blog/archives/2007/01/information_sec_1.html
https://www.schneier.com/blog/archives/2007/01/information_sec_1.html
https://doi.org/10.1016/j.cose.2014.05.003
https://doi.org/10.1016/j.cose.2014.05.003
https://doi.org/10.1145/2896941.2896946
https://doi.org/10.4018/IJSSE.2016100103

	Abstract
	1 Introduction
	2 Background
	2.1 What is Software Security?
	2.2 Computer Security Incident Management
	2.3 DevOps Security in the Literature

	3 Incident Management and Software Development
	4 Discussion
	5 Conclusion
	References

