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Abstract Security testing low-level connected devices such as Internet of
Things (IoT) devices is difficult due to their limited memory, communication
bandwidth, and processing power. As a result, traditional testing processes
become difficult and time-consuming in such cases. In this paper, we survey
recent fuzzers suitable for fuzzing devices with the most common type of
microprocessor: the ARM Cortex-M.

Key words: Fuzzing, firmware, analysis, cyber security, testing

1 Introduction

Embedded devices are increasingly connected to critical networks and the
internet, emphasizing the need for security testing. This becomes especially
challenging with low-level connected devices which have limitations in mem-
ory, communication bandwidth, and processing power. As a result, traditional
testing processes become difficult and time-consuming in such cases.

We intend to discover, compare and discuss some state-of-the art firmware
fuzzers for embedded devices using the ARM Cortex-M, to create an overview
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of security testing tools for developers. We will discuss the amount of and
quality of documentation for each fuzzer, as most firmware fuzzers available
today need extensive manual efforts to configure and analyse the output.
Sparse documentation increases the threshold for implementing fuzzing in
security testing, and quality guidance material should thus be a priority for
developers of these tools. This survey is intended to be a contribution to a
not-so-large pool of literature reviews on embedded device fuzzing. It will
hopefully highlight some aspects of firmware fuzzing as well as presenting
some of the newest research in this field.

The rest of the paper is structured as follows. Section 2 explains the survey
method, and Section 3 documents the results. Section 4 provides a discussion
of the implications, and Section 5 summarises the results and identifies future
work.

2 Method

Our literature review intended to identify, evaluate and narrow down suitable
firmware fuzzers. We followed a template for literature reviews including six
steps: formulating research questions, performing an initial search for litera-
ture, narrowing down the results, assessing the results, extracting interesting
information, and lastly analysing the results [28].

We used Google Scholar to identify most up-to-date firmware fuzzers. The
main reason for choosing Google Scholar over other databases was that the
former also covers grey literature such as reports, blog posts and software
documentation. Our search string was ”firmware AND fuzzing AND arm
cortex M”, and gave 3 300 results in Google Scholar. After filtering out papers
released before 2020, the results were narrowed down to 1 490. To do a rough
elimination of papers not relevant to our research, we read the titles and short
summaries available on the Google Scholar search results page. The criteria
for this selection was that the paper describes a firmware fuzzer that supports
fuzzing ARM Cortex-M CPUs. This left us with approximately 60 possible
relevant papers, as illustrated in Fig. 1. When we had identified these, we
continued to read abstracts, introductions and conclusions. In addition, we
used the snowball method where we found firmware fuzzer candidates in other
fuzzer papers.

We selected a total of 17 fuzzers we initially found relevant for our research,
and read through the papers and their GitHub READMEs to differentiate
them. To illustrate and explain the differences between the tools, we included
modelled overviews of the architectures of the tools. We adapted them from
models from their respective papers, to be able to include them in this paper.
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Search

Filter by release date

Filter by title

Filter by abstract, introduction
and conclusion

3.300

1.490

13
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Fuzzers found using the
snowballing method

Fuzzers included in the review

4

17

Fig. 1 Search strategy, adapted from [20].

3 Survey Results

Hardware Abstraction Layers (HALs) are abstractions meant to simplify de-
velopment of firmware implementations. HALucinator [4] takes advantage
of these to perform High-Level Emulation (HLE), to separate the firmware
from the hardware for testing. To be able to do so, a binary analysis is
performed to locate library functions of a sample firmware. Following this,
generic function implementations can be provided in an emulator for the com-
plete system. They are implemented in an emulator to create an image of the
firmware, which can be fuzzed by AFL [4]. The emulator used in HALuci-
nator is based on QEMU [29]. HALucinator supports firmware from ARM
Cortex-M architectures that are statically linked into one binary executable.
As shown in Fig. 2, HALucinator provides a high-level emulation environ-
ment on top of the emulator. The emulator needs to replace the execution of
selected function addresses to ensure that the re-hosted firmware is correctly
executed. The intercepted functions relates to on-chip or off-chip peripher-
als of the embedded device. HALucinator simplify this implementation by
breaking down the needed implementations per library into handlers. These
handlers encodes each HAL functions´ semantics. The purpose of peripheral
models is to address common intrinsic elements of what a certain class or
kind of peripheral needs to perform. It can be observed in the figure that
the IO server enables emulator host interactions. To be able to meaningfully
execute the re-hosted firmware it must be able to interact with external de-
vices outside of the CPU. Because of this, each peripheral model defines an
interface for the host system to send and receive data and trigger interrupts.
An I/O server is then used to make these interfaces available [4]. The GitHub
repository was last updated in November of 2022 [3]. It includes documenta-
tion about how to use the fuzzer [3]. It also explains the installation steps,
a recommended environment, dependencies and basic usage with examples.
Lastly, there is a brief explanation on how to analyse the output.
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Fig. 2 Overview of HALucinator, adapted from [4].

µAFL [25] is a grey-box fuzzing tool that employs hardware-in-the-loop.
This implies that to be able to use µAFL, developers need access to the
board as well as additional dongles. Dongles are components that can be
plugged into the device to provide more functionality to the device. It lever-
ages debugging tools in existing embedded system development to construct
an AFL-compatible environment for fuzzing [25]. It uses the debug dongle
to bridge the fuzzing environment on the PC and the target firmware on the
microcontroller device. These debug dongles from the embedded development
environment are used to ensure cooperability between the engine and AFL
[41] [25]. To collect code coverage information without costly code instrumen-
tation, µAFL relies on the ARM Embedded Trace Macrocell (ETM) hard-
ware debugging feature, which transparently collects the instruction trace and
streams the results to the PC [25]. The raw ETM data is obscure and needs
enormous computing resources to recover the actual instruction trace. µAFL
addresses this challenge by using a feedback-driven approach to recover the
instruction trace from the raw ETM data. It then uses the recovered instruc-
tion trace to guide the fuzzing process. Fig. 3 shows the overview of µAFL.
The host PC and target board communicate through a debugging dongle.
µAFL adopts AFLs genetic algorithm while substituting its process-based
execution engine with two essential components, an online trace collector and
an offline trace analyser [25]. The host PC feeds the test case through the
debug dongle into a reserved memory on the target board. The target board
directs the target to begin execution. The host PC sends the command to
activate the ETM function. While the firmware is executing, the generated
instruction trace is synchronously streamed to the host PC via the debug
dongle. The host PC sends command to deactivate ETM. The collected trace
information is used to reconstruct the execution paths. The final outcome is
checked against the bitmap to see if any new paths have been found. The
Github repository was last updated in July of 2022 [24]. The documentation
includes a recommended environment. However, there are no instructions on
how to actually install it correctly. It explains how to run the fuzzer and a
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provides list on how to prepare the hardware environment. In addition, there
is no documentation on how to analyse the output or how to create a correct
configuration file.

Fig. 3 Overview of µAFL, adapted from [25].

FIRM-AFL [43] is a grey-box fuzzer where the main focus is to create a
high-throughput emulation to increase efficiency in full system testing [43].
The paper proposes a new technique called augmented process emulation,
where the idea is to augment process (user-mode) emulation with full sys-
tem emulation. FIRM-AFL is a prototype to evaluate the feasibility of this
technique, and it is built on top of AFL [41] and FIRMADYNE [1] [43].
FIRMADYNE [1] can emulate both ARM and MIPS architectures [16]. The
architecture and workflow of FIRM-AFL is shown in Fig. 4. afl-fuzz that is
the main program that drives the fuzzing. This program picks a seed from
the seed queue, performs a random mutation, generates an input, and feeds
this input to the target program. To gather code coverage data during the
target program’s execution, FIRM-AFL uses augmented process emulation
to launch the program, instruments the program’s branch transitions, and
then encodes and stores the code coverage data in a bitmap. To speed up the
process of repeatedly executing the target program, which is necessary for
fuzzing, FIRM-AFL uses a mechanism called fork. This mechanism runs the
target program up to a certain point so that the program’s code and data
have been properly initialized, and then repeatedly forks a child process from
it. Because of this, the parent process is called fork server. The input is fed
into the forked child instance, and then coverage information is collected and
stored in a bitmap that is shared between all three instances (afl-fuzz, fork
server, and child instance). Lastly, afl-fuzz uses the bitmap from the child
instance to compare it with the bitmap obtained from all past executions
to determine if this mutated input should be kept as a new seed and stored
in the seed queue [43]. The GitHub repository of Firm-AFL has not been
updated since October 2020 [42]. In the repository there is information on
how to install and use the fuzzer with the commands to run it. It does not
mention a recommended environment, configuration, or output analysis.
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Fig. 4 Overview of FIRM-AFL, adapted from [43].

FIRMCORN [16] is a grey-box fuzzer uses a vulnerable-code search al-
gorithm to determine the entry point for vulnerability-oriented fuzzing and
optimized virtual execution technology to improve execution speed, accel-
erate execution accuracy, and ensure execution stability. The emulator is
based on Unicorn Engine [5] and their own fuzzer and crash submodules. An
overview of the architecture is modelled in 5. The framework is separated
into five parts: preanalysis, dump, fuzz, hook and crash. These five submod-
ules are all connected to FIRMCORN core. The first part is the preanalysis,
where an algorithm groups all functions in the firmware based on complex-
ity. The second part is dump, where shell access to the device is obtained
in one out of three ways: Telnet/SSH, Device Debug Interface or using the
Firmware Update Mechanism. Once shell is obtained, gdbserver is uploaded
to the device and this is used to dump context. The hook part is where
the Global Offset Table Hook (GOT) information is analyzed. This includes
unresolved functions, hardware-specific functions, custom functions and un-
necessary functions. The optimized virtual execution part takes place in the
core. Here, we can find the CPU emulator, fuzzing policy, the initial environ-
ment and a module for heuristic optimization that communicates with the
hook part. The fuzz submodule contains the fuzzer, and the crash submodule
checks and stores information about crashes [16]. The GitHub repository has
not been updated since April 2022 [15]. The repository contains only a link
to the technical paper of FIRMCORN. In the paper, there is no information
on how to install the fuzzer, run the fuzzer, configure the configuration file,
or analyse the output.

EM-fuzz [14] is a grey-box fuzzer that integrates real-time memory check-
ing into fuzzing to improve bug discovery of the fuzzing [14]. It is based on
QEMU [29] for emulation and AFL [41] for the fuzzing engine. EM-fuzz aims
to reach certain program branches early and execute specific blocks of code
more frequently by mutating the input data [14]. It also checks for memory-
related vulnerabilities by monitoring the system’s memory usage during the
execution of the test cases. An overview of the architecture is modelled in
Fig. 6. EM-fuzz contains two main modules. The first module is the memory
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Fig. 5 Overview of FIRMCORN, adapted from [16]

checking instrumentation component which is responsible for recording mem-
ory operations that are used in the second main module that performs the
guided fuzzing. It uses information about the branches to generate seeds that
aid in discovering memory regions that otherwise could be difficult to reach.
The parts of the fuzzing module are the fuzzing controller, the seed collector,
mutation engine and a process execution component. The controller uses the
feedback from earlier executions to have control over which branches have
been traversed. The seed selector is responsible for calculating probabilities
and adjusting prioritization for the seeds resulting in an execution of a rare
branch, ensuring that also rare branches have a high probability of being tra-
versed. The mutator is responsible for maximizing the branch coverage. The
process execution component performs the fuzzing, and forwards information
on interesting test cases and crashes to their respective queues, and delivers
feedback to the controller. The last component is the emulator, which is based
on QEMU [14]. As of January 2024, this framework is not open source [40].

FirmHybridFuzzer [38] is a hybrid fuzzing tool that enables testing of
MCU firmware without relying on specific peripheral hardware [38]. FirmHy-
bridFuzzer can efficiently test the correctness of a certain portion of the code
and maximize code coverage [27]. It is a hybrid fuzzer, which means that it
combines the benefit of both traditional fuzzing and symbolic execution [38].
The key solution in this fuzzer is the implementation of a virtual peripheral,
allowing it to emulate the behaviour of different peripherals. FirmHybrid-
Fuzzer uses AFL [41] as the fuzzer. Fig. 7 shows an overview of FirmHybrid-
Fuzzer. The input to the fuzzing framework consists of a firmware binary and
the output is the potential firmware vulnerabilities. FirmHybridFuzzer works
on the firmware as a whole, meaning it tests both the application tasks and
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Fig. 6 Overview of EM-fuzz, adapted from [14].

the kernel. To do so, the fuzzer uses the symbolic peripheral-based execution
technique. That is a technique to be able to execute firmware in the lack
of a physical peripheral and hybrid event generation. The fuzzer also uses a
mechanism called multiple dimensional coverage feedback based guidance to
improve test case generation. To identify common firmware vulnerabilities,
FirmHybridFuzzer implements a fault detection mechanism [38]. The last
update on the GitHub repository was November 2023 [37]. The documen-
tation contains information on how to install and run the fuzzer. They do
not provide all the installation commands, but refer to README files from
other repositories. Only brief information on basic usage and configuration is
included. Output analysis is not explained [37].

Firmware binary

Firmware 
vulnerability

Fault detection
mechanism

Peripheral seed
queues

Hybrid event generation
(constraint/mutate)

Unified virtual peripheral-based full system
emulation

QEMU

Multiple dimensional coverage feedback based guidance (between blocks or
peripherals)

Fig. 7 Overview of FirmHybridFuzzer, adapted from [38].

PRETENDER [19] is a fuzzer that observes the interaction between the
hardware and firmware to automatically create models of peripherals. What
sets this apart from the other fuzzers, is that they are stateful, interactive
and transferable. By creating these models of peripherals, the firmware can
be executed in a fully virtual environment. The emulator is based on QEMU.
It only supports ARM Cortex devices [19]. An overview of the architecture
is modelled in Fig. 8. PRETENDER works on unmodified firmware by ob-
serving interactions within the hardware and generating models based on the
hardware peripherals. This can be observed by the input to the emulated en-
vironment in the figure. This is a hardware-in-the-loop technique where the
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models that are generated are fed into an emulator, in this case QEMU. This
is then processed using machine learning and pattern-based analysis, and di-
rected back to the emulated environment [19]. The GitHub repository was
last updated in August of 2020 [18]. The README file contains information
on how to set up, install and run the fuzzer. Dependencies are mentioned.
Commands for running the fuzzer is explained, but there is no information
on how to configure the targets or analyse the results [18].

Fig. 8 Overview of PRETENDER, adapted from [19].

P2IM [12] is a fuzzing framework and presents a technique called Processor-
Peripheral Interface Modeling, that models I/O accesses for several periph-
erals. It treats peripheral devices as black boxes. It uses QEMU [29] for
emulation and AFL [41] for fuzzing. P2IM uses a technique called explorative
execution to automatically infer acceptable state register values during run-
time [12]. Handling state register writes is much simpler and the same for all
firmware [12]. An overview of the architecture is modelled in Fig. 9. The fuzzer
is an unmodified implementation of AFL, and the emulator based on QEMU.
The Processor-Peripheral Interface Modeling technique proposed by P2IM is
what models the behaviour of the peripherals. These models check the criteria
of a property they propose called Processor-Peripheral Interface Equivalence,
which is a prerequisite for executing the emulated firmware. The emulated
firmware is executed, and feedback is provided back to the fuzzer [12]. The
GitHub repository for this fuzzer was last updated in November 2023 [11].
The documentation includes information on how to install the fuzzer, con-
figure the target, perform the fuzzing and analyse the results. Preparing the
target, including configuration, is also explained with references to the pa-
per for more information. Its basic usage, including optional customization,
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statistics and coverage is mentioned, as well as some commands that help
in output analysis. Separate README-files for adding an MCU, building
QEMU and prepping the firmware for fuzzing is referenced. Thorough expla-
nations for each step are not included, and there is a limited information on
how to analyze the results [11].

Fig. 9 Overview of P2IM, adapted from [12].

Fuzzware [31] is a fuzzing tool that self-configures inputs to test a
firmware image without knowledge about the underlying architecture [31].
It uses access models to transform fuzzing inputs to meaningful values for
the firmware to interpret. It uses AFL [41] as the fuzzing engine and supple-
ments it by providing an emulator and access models to translate firmware
images to something that is fuzzable by AFL [41] [31]. The emulator is based
on Unicorn Engine. An overview of the architecture is illustrated in Fig. 10.
The fuzzer generates input that is provided to the emulator. MMIO accesses
triggers parts of the raw input to be consumed by the MMIO access models.
Here, they are transformed into hardware-generated values and sent to the
emulated target. Then, coverage feedback is forwarded to the fuzzer for fur-
ther mutation [31]. The GitHub repository was last updated in October of
2023 [33]. The documentation includes information on how to install Fuzzware
locally or using Docker, how to configure targets, and how to analyse the re-
sults. It also includes thorough explainations for each step, each component
and an overall explaination of the fuzzer. It links to separate README-files
for each step, where configuration, customization and analysis is explained
in-depth [33].

Fig. 10 Overview of Fuzzware, adapted from [31].
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Hoedur [32] attempts to mitigate shortcomings of previous black-box
fuzzers by allowing the fuzzer to process feedback from firmware execution
and understand inputs in a multi-stream form. This is done by deciding
the context of the accesses during execution, which involves the counter,
the MMIO register address of the request and the size of the access. Based
on these values, Hoedur can generate input streams that are combined into
a multi-stream input. The fuzzing engine is mainly based upon libFuzzer,
with certain features borrowed from AFL and AFL++ [41] [32]. The emu-
lator is based upon QEMU [29], with some minor modifications. Automated
DMA support is not yet implemented in Hoedur, but can be manually han-
dled within the MMIO setting. An overview of the architecture is modelled
in Fig. 11. The fuzzer provides a multi-stream input to the emulator. The
emulator is what exists within the dotted frame in the figure, to execute
the firmware using the multi-stream input. During execution of the target
firmware, firmware-specific feedback is recorded. The emulator then provides
the extended feedback back to the fuzzer [32]. The GitHub repository was last
updated in October of 2023 [34]. The documentation includes information on
how to install, fuzz, collect coverage information, and run tracing or hooking
scripts. It explains for basic usage, and mentions to use the –help for details
on customizing the fuzzer. There is no information on how to configure the
target or analyse the results [34].

Fig. 11 Overview of Hoedur, adapted from [32].

Ember-IO [6] is a fuzzing framework for firmware that uses model-free
memory mapped I/O. This means that the fuzzing framework manages the
complexities posed by fuzzing a wide range of memory mapped peripherals
without the need to generate register models. It was an initiative to en-
hance the capabilities of existing fuzzing tools for firmware. Ember-IO uses
AFL++ for the fuzzer and QEMU as the emulator to re-host monolithic
firmware [6]. This fuzzing framework is focused on monolithic firmware and
supports firmware built for ARM Cortex-M microcontrollers. The Ember-IO
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paper introduces functional equivalent coverage instrumentation (FERMCov)
and peripheral input playback (PIP) techniques. These techniques improve
the performance of monolithic firmware fuzzers by enabling a more efficient
search through the input-space and thus overcomes the obstacles imposed
by MMIO when accessing and reaching deep code paths [6]. The PIP tech-
nique provides mutations more likely to reach previously unseen code and
FERMCov increases the likelihood of the mutation efforts on inputs to un-
cover interesting code paths [6]. An overview of the architecture is modelled
in Fig. 12. The MMIO manager component is in control of the raw input
stream that is sent to the firmware. The FERMCov generator is the com-
ponent that sends coverage feedback to the fuzzer, and is responsible for
the functional equivalent coverage instrumentation. The peripheral memory
store within the MMIO manager is responsible for the PIP technique. The
interrupt manager sends an interrupt if a sleep instruction is triggered, and
also at certain times based on how many blocks are executed [6]. The GitHub
repository of Ember-IO was last updated June 2023 [8]. The documentation
includes information on installation, fuzzing, configuration and analysis. Con-
figuration is explained. For the analysis part, replaying inputs and debugging
crashes is explained. The GNU Project Debugger (GDB) can be used as well
by adding some flag to the command. This option has its own file in the
repository, where it is explained in depth. The README file also includes
some details on Peripheral Input Playback and FERMCov, which can be
useful to understand how the fuzzer works [8].

Fig. 12 Overview of Ember-IO, adapted from [6].

µEMU is a firmware fuzzer that is based on S2E, which is a QEMU-based
concolic execution tool [45]. µEMU is an approach to emulate firmware with
unknown peripherals. It works by taking the firmware image as input and
then symbolically executes it by representing unknown peripherals registers
as symbols [45]. Fig. 13 shows the architecture of the fuzzer. The fuzzing
engine is based on AFL, but is modified to use AFL only for test-case gener-
ation and FuzzerHelper for the rest. This includes coverage instrumentation,
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the fork server, and crash/hang detection. FuzzerHelper is modelled in the
Plugins section of Fig. 13. Since S2E 2.0 does not support ARM MCUs,
µEMU has made two contributions to include support for ARM architec-
ture: porting ARM dynamic binary translation to the S2E emulation using
QEMU, and adding interfaces for QEMU for managing the CPU of ARM
Cortex-M through the kernel-based virtual machine (KVM) interface. The
GitHub repository was last updated November 2023 [44]. The documenta-
tion contains information on installation, including optional methods and
recommended environment, fuzzing, configuration and analysis. It includes a
subsection on how to update the repository, which is not included in many of
the other READMEs. Usage is explained thoroughly, with steps to configure
the target and to run the fuzzer. Analysis is explained to some extent, also
how to calculate coverage and use GDB to debug. Configuration is explained
well in a separate file [45].
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CPU and memory
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Host Machine Code LLVM Bitcode
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Fig. 13 Overview of µEMU, adapted from [45].
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SplITS [7] is implemented on top of Fuzzware, and extends it by running
a feedback guided search for input-to-state mappings as well as provide a
strategy for optimized replacement of input. The framework also applies the
FERMCov technique described in Ember-IO [6] to increase the effectiveness
of the framework. Embedded devices use input-to-state mappings to bypass
problems like infinite loops that can occur if a peripheral does not respond
with an expected response in string format (OK). SplITS allows the map-
ping and replacement of non-contiguous strings in input-to-state transitions.
The overview of SplITS is shown in Fig. 14. SplITS is based on Fuzzware,
therefore using Unicorn Engine as the emulator, and extends it by imple-
menting AFL++[41] as the fuzzer. String comparison is performed in the
instrumentation and feedback part of the emulator. Length feedback is also
performed here, by using the fuzzer’s coverage bitmap. The feedback guided
search and replacement component receives information about string com-
parisons and position of the mutated bytes. Then it performs the comparison
by using incremental feedback [7]. The GitHub repository is last updated in
September 2023 [9]. The documentation includes information on installation,
fuzzing and an overview of the architecture of the fuzzer. It mentions a rec-
ommended environment, dependencies, and explains basic usage. It does not
contain any further information, but since the fuzzer is built on top of Fuz-
zware, the documentation from Fuzzware is also included in the repository.
Like explained earlier in this review, Fuzzware is thoroughly documented,
and includes information of configuration, customization and analysis.

Fig. 14 Overview of SplITS, adapted from [7].

Jetset [22] uses guided symbolic execution to generate a model of the
device’s peripherals and passes it on to QEMU [29] to emulate the hardware.
AFL is used as the fuzzing engine. To run Jetset, developers need access to
the executable code, the memory layout, the entry point address and the pro-
gram goal address. Jetset has no support for devices using DMA because these
devices gains access to the memory without consulting the CPU. Therefore
the firmware cannot observe these accesses [22]. The architecture of Jetset
is modelled in Fig. 15. Jetset uses the firmware binary, its entry point and
memory map as input. Directed symbolic execution is performed in the de-
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vice interference stage to discover interesting locations in the firmware for
further analysis. In the next step, the device synthesis, constraints discov-
ered in the previous step is used to construct a model of the device. Lastly,
this model is used in QEMU to emulate the firmware. AFL is used for fuzzing
[22]. The GitHub repository of this fuzzer was last updated March 2022 [21].
The documentation contains information on installation, fuzzing, reproduc-
ing the crashes as well as links to related repositories and FAQs. It mentions
dependencies and shows the basic usage with explanations. It also includes
information on how to reproduce the results, but does not contain any ad-
ditional documentation on how to analyze and interpret the results. It does
not include any background information or information on how to configure
or customize. It also does not recommend a specific environment [21].

Firmware Binary

Entry point

Memory map

Device
interference

Device
synthesis

Jetset QEMU

Synthetic
devices

Fig. 15 Overview of Jetset, adapted from [22].

FIRMNANO [17] is a fuzzing framework based on augmented virtual
execution, similarly to Firm-AFL (3), to implement fuzzing for firmware.
FIRMNANO uses MMIO modeling, implements a virtual interrupt controller,
and supports emulation of DMA peripherals and controllers [17]. The fuzzer
is AFL [41] and afl-unicorn, which allows fuzzing of binaries emulated with
Unicorn Engine [39]. The architecture of FIRMNANO is shown in Fig. 16.
The emulation takes place in the augmented virtual execution core. Within
the core is the CPU emulator and a component for MMIO modelling, inter-
rupt handles and DMA support. The emulator is based on Unicorn Engine.
The MMIO model part records and adds information about peripherals to a
peripheral list. During the pre-exection, this list is traversed to map the re-
gions for MMIO. During execution, these are provided to the Unicorn Engine
API. The interrupt handle part involves a virtual interrupt controller that
streamlines the emulation of the interrupts. The DMA support part uses in-
formation about firmware symbols to emulate DMA-related functions. After
the firmware has been emulated in the core, it is fuzzed by AFL. The outputs
are mutated and directed back towards the core for execution on the emulated
firmware [17]. As of March 2024, we haven’t received a response from the pa-
per’s authors regarding the availability of the tool as open source, despite
our attempts to contact them.

HD-Fuzz [23] is a firmware fuzzer developed to be aware of the under-
lying hardware dependencies by utilizing a hybrid MMIO modeling scheme.
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Fig. 16 Overview of FIRMNANO, adapted from [17].

This is a technique where fuzzing and symbolic execution is adapted to the
firmware. It is implemented on top of a QEMU-based [29] platform for sym-
bolic execution, S2E 2.0 [2], and uses AFL [41] for fuzzing. HD-Fuzz is unable
to observe DMA accesses, and therefore cannot emulate these responses [23].
Another limitation of HD-Fuzz is per-firmware manual effort. As depicted
in Fig. 17, the workflow of HD-Fuzz is divided into 4 parts: inputs, rehost-
ing, hybrid MMIO modeling and outputs. The first step is to configure and
input the firmware to the rehosted system. Here, the firmware is separated
into system-side firmware code and user-side firmware code to execute them
sequentially. To include MMIO modeling, a hybrid solution is implemented.
The system-side code is used for initial modelling, then the user-side code
is used for mutational modeling using the hybrid method. The additional
search and is used to deduce MMIO responses. HD-Fuzz uses these steps to
create inputs: crashing inputs and peripheral inputs. Lastly, these are passed
to the fuzzer and the results re-iterated through the hybrid MMIO method
to discover new paths [23]. As of March 2024, we haven’t received a response
from the paper’s authors regarding the availability of the tool as open source,
despite our attempts to contact them.

Fig. 17 Overview of HD-Fuzz, adapted from [23].
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SAFIREFUZZ [36] implements a different method of rehosting than
many of the competitors. It is a technique they call near-native rehosting.
They have based the peripheral interaction emulation on the approach used
in HALucinator (3), using HAL-based hooks [36]. Instead of rehosting a vir-
tual image of the firmware, they adapt binaries to be rehosted in an ARM
Cortex-A system that is more powerful [36]. It uses LibAFL as the fuzzing
engine. The engine can only run on ARMv7-A cores, e.g. to be found in
Cortex-A cores in Raspberry Pis. SAFIREFUZZ does not rely on an emula-
tor and is thus not emulating a whole architecture [36]. This is to avoid the
performance penalty induced by emulators such as QEMU. Instead, it uses
a light-weight dynamic binary rewriting approach called near-native rehost-
ing. This technique exploits that some ARMv8-A cores provide userspace
compatibility with the AArch32 and Thumb instruction set variants [36].
This is done instead of emulating the firmware through lifting and recompi-
lation. Like modelled in Fig. 18, SAFIREFUZZ implements a fuzzing engine,
LibAFL, that executes the target, is responsible for rehosting and instru-
mentation. High-Level Emulation using HALs is used to handle unknown
peripherals, by implementing a harness that is tailored to the firmware. This
is responsible for memory initialization and records HAL-hooks, and does this
by modifying the initial basic block. Translation of these blocks is performed
by the engine, while at the same time instrumenting the target, moving the
execution of the correct hooks and estimate interrupts. To ensure efficiency,
only one basic block is rewritten at a time. This is to avoid multiple rewrites
to blocks, and reduce overhead in instrumentation [36]. The GitHub reposi-
tory was last updated in September of 2023 [35]. The documentation includes
information about installation, usage, harnessing and performance. It speci-
fies recommended environment, as well as packages and libraries. Commands
to run the fuzzer are provided and briefly explained. There is no documenta-
tion on analysis and interpretation of the results. Overall, the documentation
for this fuzzer is short and lacks explanations and options for customization.
It mentions where to specify the configuration file, but does not contain any
information on how to properly configure the target [35].

Fig. 18 Architecture of SAFIREFUZZ, adapted from [36].
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4 Discussion

After having examined the candidate tools, we will now discuss the differences
and similarities between them. Apart from the technical differences of the
fuzzers, it is important to consider ease-of-use to evaluate the different fuzzers’
applicability in real-word firmware security testing. Therefore, we will begin
by discussing the non-technical details of the fuzzers, and then proceed with
the architectural and functional differences.

The most important aspect of the ease-of-use of a fuzzer is the documen-
tation, both for installation and further usage. Most fuzzers in this review
included information on how to install the tool, but there are few fully devel-
oped implementations for firmware developers to use out-of-the-box. If there
isn’t enough guidance on how to use fuzzing in different situations or on how
to understand its results, it will be more difficult to adopt fuzzing as a new
method for security testing.

The only fuzzers in this review that have thorough and descriptive docu-
mentation for installation, usage and analysis, are Fuzzware, Ember-IO and
µEMU. SplITS indirectly includes documentation as it uses Fuzzware as a
submodule, and therefore uses the same commands. Because of this, Fuz-
zware’s documentation can be used for fuzzing with SplITS.

Another important aspect when it comes to comparing the fuzzers is
whether it is actively maintained and up-to-date with architectures and tech-
nologies. Firmware fuzzing is a relatively new concept, and a large portion
of the research that exists on the topic has been conducted in the last cou-
ple of years. Therefore, we expect new methods or improvements to existing
methods to be discovered rapidly. Choosing a tool that is actively maintained
could ensure that the latest technologies or methods are being used. It also
makes it more likely that any issues will be replied to and possibly fixed.

A third important criterion to ensure ease-of-use in commercial devices, is
for the licensing to allow the tool to be used in a commercial environment.
Developers need be allowed to run the code and use the tool. While working
on this review, we contacted the developers of fuzzers that were missing
appropriate licensing, and licences were added to their repositories. We did
not receive a response from FIRMCORN, which is still missing a licence.

AFL has grown to become the industry standard for fuzzing software.
Amongst the reasons why, are low-effort testing due to automation, sim-
plicity of design, and compatibility with emulators to expand the support to
more than just software. The original AFL fuzzer has been bypassed by a new
version, AFL++, which provides additional features and options for customi-
sation [13]. Out of the fuzzers we have included in this review, only SplITS
and Ember-IO implements AFL++ directly. Some of the other fuzzers have
the option to use AFL++, however it must be set specifically. Another differ-
ence is whether the fuzzers use an out-of-the-box implementation of AFL, or
use it with modifications. Some of the fuzzers (µEMU, P2IM and Fuzzware)
use AFL unmodified, as a component solution in their products. Most of the
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remaining fuzzers modify the fuzzing engine to fit their use cases [32]. As dis-
cussed above, Hoedur implement their own fuzzing engine based on libFuzzer
[32].

When it comes to emulating the firmware, almost all the fuzzers in this
review use QEMU directly or a QEMU-based implementation. Fuzzware,
FIRMCORN, SplITS, and FIRMNANO use Unicorn as the emulator, and
Unicorn is based on QEMU. A fuzzer that stands out from the rest is
SAFIREFUZZ, as it does not use an emulator, but the near-native rehosting
technique.

As of 2024, complete emulation of the varieties of MCUs is not yet possible.
There are two techniques for testing firmware: hardware-in-the-loop and em-
ulation for virtually rehosting the hardware. Out of all the candidate fuzzers,
only µAFL uses hardware-in-the-loop. By using this method, it bypasses the
need for abstractions by forwarding hardware accesses to a physical device
during emulation [25]. Although this makes it possible to analyse firmware
dynamically, this method is not very useful for fuzz testing. It requires one in-
stance of the target hardware per fuzzing thread since the hardware state and
fuzzer must be maintained consistent, in addition to the fact that forwarding
is typically a bottleneck for most of these systems [31].

The remaining fuzzers discussed in this review apply different techniques to
emulate the hardware. Some of them replace the interactions in the Hardware
Abstraction Layer, including HALucinator and SAFIREFUZZ. µEmu and
P2IM use heuristic models for automating the same process. A third technique
is to perform the fuzzing on all the registers and use other methods to reduce
overhead. This is done in Fuzzware and Ember-IO. Lastly, techniques such
as symbolic execution and coverage-guidance is used in several of the fuzzers
to make the process more efficient [7]. An alternative to symbolic execution
is developed in Ember-IO to create a fuzzer that does not generate models as
part of the emulation. This is done to avoid the increase in manual labor to
avoid failures caused by misrepresentations in heuristic-based models. It can
also include testing of error handlers, which is known to cause a significant
amount of bugs. This is the FERMCov technique described in the review.
This technique is applied in some of the other fuzzers as well: SplITS and
experimentally on Fuzzware [7].

HALucinator and SAFIREFUZZ abstracts away the hardware interface
using a technique that enables the use of fuzzers like AFL [41] without hav-
ing to perform any peripheral functions. While these HAL-based fuzzers are
unable to operate on the driver level, µAFL targets these specifically. This is
different from the other approaches, as drivers are peripherals that interact
with the outside world and should be tested accordingly [25].

While reviewing the papers, we discovered that several of the authors are
involved in more than one of the fuzzers in this review. This could be a reason
as to why many of the fuzzers have similar techniques, components or even
build directly on top of each other. In the following we will discuss some
similarities between the fuzzers.
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Fuzzware and Hoedur are created by almost the same research team, where
Hoedur is a strictly improved version of Fuzzware. Both are built using el-
ements from AFL/AFL++ as their fuzzing engine. One major difference in
their architecture is the emulator. Fuzzware uses Unicorn and Hoedur uses
QEMU. The reason for Hoedur not using the same emulator as Fuzzware is
that QEMU makes it easier to support hardware features [30]. However, they
are also similar because Hoedur includes the Fuzzware modeling, in addition
to use the multi-stream inputs.

Ember-IO and SplITS are created by the some of the same developers,
and was intended to target two different types of firmware. Ember-IO was
developed to cover the repetitive access pattern that is the case for many
peripherals. Therefore it is beneficial for fuzzing firmware that performs a
large amount of input and output operations. SplITS is intended for firmware
that performs string comparisons, and applies Input To State (ITS) mappings
to do so. Like mentioned in the review, Ember-IO is built using AFL++ and
QEMU while SplITS is built on top of Fuzzware which uses AFL and Unicorn.
This is because the Peripheral Input Playback (PIP) technique applied in
Ember-IO led to a slight decrease of consistency in performance - some data
could be repeated by the PIP technique, meaning that a byte in the firmware
does not necessarily correspond to a single byte in the fuzzer generated input
[10].

Another difference is that SplITS depends on a one-to-one mapping be-
tween bytes from the observed firmware buffer and the fuzzer generated input
bytes for input-to-state mapping and replacement. If PIP is applied to the
data values that are loaded into the firmware buffer, this can create a one-to-
many mapping, preventing replacement with a single suitable value. While
SplITS’ techniques can be applied to Ember-IO, the developers of SplITS
found the aforementioned issue would occur in some fuzzer generated inputs,
preventing SplITS from being applied successfully to those inputs, reducing
SplITS’ overall consistency on Ember-IO compared to Fuzzware [10].

Pretender [19] and P2IM both use automation of the emulation procedure
by using direct MMIO modeling. They do this in two different ways: Pre-
tender uses recordings of real activity in the MMIO region of the device to
model the peripherals, while P2IM uses blind fuzzing, which is corresponding
to black-box fuzzing. Both methods have advantages and disadvantages, the
method used in Pretender requires access to the physical device while the
method used in P2IM is less generic and will not produce an accurate model
in many devices [4].

One of the most difficult aspects of analyzing the fuzzed firmware is the
false positive rate. A false positive is a ”false alarm” and occurs when the
fuzzer incorrectly identifies parts of the firmware as vulnerable. A high false
positive rate diminishes the effectiveness of the fuzzing tool, as it means
spending more time sorting through false alarms rather than focusing on
actual vulnerabilities, which can be frustrating and time-consuming. Thus,
triggering crashes does not need to mean that it represents a security issue.
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An aspect to consider when discussing false positives found while fuzzing
a firmware image of an embedded device, is the hardware constraints. As
discussed in the background section, developers have to consider if vulnera-
bilities are likely to be exploitable if the code is not reachable on the physical
device. Even though the optimal solution is to have the firmware secure in all
environments, this would be a question of prioritization for the development
team. Ember-IO mentions that two out of the 6 new bugs discovered by the
fuzzer could be vulnerabilities that would not be reachable on the physical
device. Even though this does not count as a false positive, the development
team of the device might not expect to trigger them, unless the embedded
device is defective.

The issue of false positives arises partly because inputs for a particular
register is defined by unknown hardware [6]. This makes it challenging to
deduce directly from the firmware. For fuzzers like P2IM and µEmu, this is
unlikely to happen because in these approaches they enforce register models
based on common access patterns. In these fuzzers some registers can only
contain values written by firmware and thus prevents unexpected inputs.
Other fuzzers, such as Fuzzware and Ember-IO, have a different approach
where all registers are considered as valid sources to insert the fuzzing input.

Some false positives can be linked to the lack of DMA support in several
of the fuzzers. DMA enables the RAM to be accessed by the peripherals
directly without running it through the processor. Therefore, using symbolic
execution is not useful in discovering information about the DMA accesses
[45]. We will discuss this further below.

DMA is mentioned and explained in several of the papers, some including
options on how to incorporate support for DMA input generation. Amongst
these are manual configuration of MMIO settings and installing separate
components on top of the fuzzer. As explained, not including DMA support
can cause an increase in the amount of false positives [23], but none of the
fuzzers in our study include automated DMA support at the moment.

The research team behind Ember-IO and SplITS have followed up with a
supplementary component, DICE, to better accommodate fuzzing of firmware
that utilizes DMA [12]. The authors mention the option to implement DICE
on top of existing fuzzers to include automated DMA support [6]. DICE [26]
is a component to extend existing firmware analyzers which enables them to
create or modify DMA input channels (from peripherals to firmware) [26].
As soon as the firmware inserts the source and destination DMA transfer
pointers into the DMA controller, DICE recognises DMA input channels [26].
Subsequently, DICE modifies the data transmitted via DMA on behalf of the
firmware analyzer.

The only fuzzer included in this review that already includes support for
DMA is HALucinator. This is due to the HLE techniques applied in the
emulation of the firmware. HALucinator handles DMA by using the same
HALs as the developers use to perform DMA [4]. Here, the DMA accesses are
removed from the program. P2IM however, only considers MMIO interaction
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sequences as input, so if a crash is found it must be mapped back to the
corresponding input. In addition, the inputs are replayable against virtualized
and actual targets [4].

For the fuzzers without DMA support, a possible way of incorporating
support for DMA is by configuring a simple DMA overlay in the memory
maps [30]. This is done by manually setting an MMIO overlay region to
allow manually specifying DMA buffers in case they are located in RAM. The
resulting behavior is that fuzzing input is provided each time the specified
region is accessed.

Table 1 Overview of the firmware fuzzing tools mentioned in this review.

FUZZER EMULATOR TECHNIQUE

HALucinator [4] AFL QEMU HAL-based

µAFL [25] AFL QEMU Hardware-in-the-loop

FIRM-AFL [1] AFL FIRMADYNE Coverage-feedback [40]

FIRMCORN [16] Their own imple-

mentation

Unicorn Pattern-based

EM-Fuzz [14] AFL QEMU Coverage-feedback [40]

FirmHybridFuzzer [38] AFL QEMU Symbolic Execution

PRETENDER [19] Their own imple-

mentation

QEMU Pattern-based

P2IM [12] AFL QEMU Pattern-based

Fuzzware [31] AFL Unicorn Symbolic Execution

Hoedur [32] libFuzzer QEMU Symbolic Execution with

Multi-stream input

Ember-IO [6] AFL++ QEMU Coverage-feedback (FERM-
Cov)

µEMU [45] AFL QEMU (S2E) Symbolic Execution

SplITS [7] AFL++ Unicorn Symbolic Execution with
FERMCov [6]

FIRMNANO [17] AFL Unicorn Coverage-feedback

HD-Fuzz [23] AFL QEMU (S2E) Symbolic Execution

Jetset [23] AFL QEMU (S2E) Symbolic Execution

SAFIREFUZZ [36] LibAFL Near-native rehost-
ing2

HAL-based

5 Conclusion

Even though the research field on fuzzing embedded devices is growing,
firmware fuzzing is still so complicated that there is a long way to go un-
til we can expect adaptation in most security testing routines of embedded
devices. An important step in the right direction is ensuring thorough and

2 Safirefuzz does not rely on an emulator.
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descriptive documentation, which is why we have decided to emphasise doc-
umentation in this review. If this ensures adaptation in real-world projects,
this could lead to more feedback that the developers of the fuzzers can use to
improve the tools. Several of the papers in this review discuss the possibility
of future support for DMA. After communicating with the developers of the
different fuzzers, our impression is that DMA support is a priority in future
work for most of them.

Table 1 shows a summary of all the fuzzers, visualizing the similarities and
differences between them. The table shows which fuzzing engine, emulator
and technique each of the firmware fuzzers use.
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